
E-ISSN 2281-4612
ISSN 2281-3993

Academic Journal of Interdisciplinary Studies
MCSER Publishing, Rome-Italy

 Vol 4 No 2 S2
 August 2015

 56

A Comparison of Three Page Replacement Algorithms: FIFO, LRU and Optimal

Genta Rexha1

Erand Elmazi2

Igli Tafa2

1University of Elbasan, Faculty of Economy, Department of Marketing and Engineering
2Polytechnic University of Tirana, Faculty of Information Technology, Department of Computer Engineering

Email: gentarexha@yahoo.com

Doi:10.5901/ajis.2015.v4n2s2p56

Abstract

The speed at which the process will be executed doesn’t depend only on the implementation of the architecture of the
computer, the frequency of the clock, but also regard to the politics the algorithm follows and the data structure the algorithm is
implemented. The usage of efficient page replacement algorithms, that choose which page in memory will be swapped if a
page fault, are required to implement in a virtual memory system. A lot of algorithms are developed during the years for page
replacement. Each algorithm has the aim to have less number of page faults. With less page faults we have an improvement in
performance and the speed of the process is increased. In this paper three algorithms (FIFO, LRU and Optimal page
replacement algorithms) will be tested and will be shown the one that has the best performance.

Keywords: memory management, replacement policy, page replacement algorithm

1. Introduction

In the memory management system the replacement of the pages is a main concept. When the Kernel creates the
process with system calls (Tanenbaum 2008, Soares et al. 2010), pages is required to be in the main memory. These
pages placed in the memory will be required by the process (Klues et al. 2010). If we will not find the pages in the main
memory, we will face with a situation that is called page fault. When a page fault occurs, the process needs to find the
page that caused the page fault in disk. If there is a free space in main memory it will put in this area. If there isn’t free
space it is necessary to make a page replacement with the algorithm that is implemented. After that the page that is
removed will be written in disk. Then the process can continue the job, because the required page is in the main memory
and the process can read it.

There are many page replacement algorithms (Tanenbaum 2008) such as: The Optimal, The Not Recently Used
(NRU), The Not Frequently Used (NFU), The First-in-First-out (FIFO), The Second Chance, The Clock, The Least
Recently Used (LRU), Aging, The Working Set, The Working Set Clock that are available in memory management
(Windows Internal Book).

The page replacement concept can be used in many areas of computer design. Two of most interesting and
important uses are: cache (Brehob et al. 2004) and web servers.

2. Related Works

There are a lot of works that regards page replacement algorithms (Comen et al. 2009). Many papers regard LRU page
replacement algorithm. Here, we focus on the work of Heikki Paajanen (Paajanen 2007) about comparison of page
replacement algorithms (Chavan et al. 2011). In this paper, the author makes a description of a memory management
and describes politics of all page replacement algorithms that are used nowadays. He proposes some formal models to
be used as theoretical analyses. He, also, makes a comparison of page hit ratio. Another interesting work is CFLRU that
is an improvement of LRU for flash memory (Park et al. 2006). In this paper, the proposed algorithm takes into the
consideration the imbalance of read and writes costs of flash memory when replacing pages. Clean-First LRU keeps a
certain amount of dirty pages with purpose in page cache to reduce the number of flash write operations. This reduces
the average replacement cost by 28.4% in swap system.

E-ISSN 2281-4612
ISSN 2281-3993

Academic Journal of Interdisciplinary Studies
MCSER Publishing, Rome-Italy

 Vol 4 No 2 S2
 August 2015

 57

3. Algorithms description

In this section three algorithms (FIFO, LRU and OPTIMAL) are presented. The results show when a page fault happened
and how to replace (swapped) a page frame in the memory with another page frame that is in disk.

3.1 The First-in-First-out Algorithm (FIFO)

In the first step, the pages are loaded in the main memory. If the page is in the memory, we pass in the other page and n
is increased by one (Figure 1).

Figure 1: FIFO flowchart diagram

When a process requires a page that isn’t in the memory, a page fault occurs. A page replacement needs to be in action.
Which page chooses FIFO (Lo et al 2001) to replace? FIFO selects the page that is entered the first in main memory.
FIFO removes the page that is older.

In Table 1 is shown how FIFO works. A sequence with 8 number of pages and a page frame with size = 3 is
chosen.

Table 1: FIFO page replacement algorithm

Sequence:
2 3 4 2 1 3 7 5

Steps 1 2 3 4 5 6 7 8 9

Pages
2 2 2 2 1 1 1 1 1
- 3 3 3 3 3 7 7 7
- - 4 4 4 4 4 5 5

In the fourth step doesn’t happen any replacement, because the page is in the memory. In the fifth step, page 2 that was
placed the first is replaced by page 1.

E-ISSN 2281-4612
ISSN 2281-3993

Academic Journal of Interdisciplinary Studies
MCSER Publishing, Rome-Italy

 Vol 4 No 2 S2
 August 2015

 58

3.2 The Optimal Algorithm

In this section the Optimal algorithm is introduced. At the first step, pages are loaded from the disk to main memory. How
many page frames?! The number of page frames is defined from the capacity of memory and they are loaded to invoke
memory until it is full. When a page fault occurs, a page needs to be swapped (Figure 2). The operating system swaps
out the page, whose next use will occur farthest in the future.

Figure 2: Optimal flowchart diagram

For example, a page that is not going to be used for the next 2 seconds will be swapped out over a page that is not going
to be used for the next 0.8 seconds.

Table 2 shows how the Optimal algorithm works. The same sequence with 8 number of pages and a page frame
with size = 3 is chosen.

Table 2: The Optimal page replacement

Sequence:
2 3 4 2 1 3 7 5

Steps 1 2 3 4 5 6 7 8

Pages
2 2 2 2 1 1 7 5
- 3 3 3 3 3 3 3
- - 4 4 4 4 4 4

In the fourth step the page 2 is in the memory. In the fifth step the page 2 is replaced with page 1.

E-ISSN 2281-4612
ISSN 2281-3993

Academic Journal of Interdisciplinary Studies
MCSER Publishing, Rome-Italy

 Vol 4 No 2 S2
 August 2015

 59

3.3 LRU page replacement algorithm

This algorithm is based on the probability theory or in a logic idea. This idea consists in pages, which have been heavily
used in the last few instructions, which will probably be used again in the next few. Pages that aren’t used for a long time
may stay in this state again. This idea suggests the philosophy of this algorithm, when a page fault occurs throw out
(swapped) the page, that isn’t used for a long time. Page that is swapped from memory is the page with small counter.
This is shown in the flowchart diagram in Figure 3. The page, which instructions haven’t been executed for a long time, is
replaced. To implement LRU (Kavar et al. 2013) is chosen a linked list to keep all pages in memory, with most recently
used page at the front and least recently used page at the tail.

Figure 3: LRU flowchart diagram

Table 3 shows how the LRU algorithm works. The same sequence with 8 number of pages and a page frame with size =
3 is chosen.

Table 3: LRU page replacement

Sequence:
2 3 4 2 1 3 7 5

Steps 1 2 3 4 5 6 7 8

Pages
2 2 2 2 2 2 7 7
- 3 3 3 1 1 1 5
- - 4 4 4 3 3 3

In the fourth step doesn’t happen any replacement because the page is in the memory. In the fifth step page 3, that is
used at least, is replaced by page 1.

E-ISSN 2281-4612
ISSN 2281-3993

Academic Journal of Interdisciplinary Studies
MCSER Publishing, Rome-Italy

 Vol 4 No 2 S2
 August 2015

 60

4. Results

The number of page faults of three algorithms is tested (FIFO, LRU and Optimal) by entering the same number of pages,
the same sequence and the same page frame in main memory.

4.1 Environment

Windows 7 Ultimate operating system is chosen. Dev C++ is used to compile and execute the application.

4.2 Test phase

A random sequence of numbers is chosen, because the application generates different sequences, and the purpose is to
test the performance of the three algorithms with the same sequence. Thus, the following sequence is chosen:

85625354235326256856234213754315
and it is used for respectively 8 pages, 16 pages, 24 pages and 32 pages.

Figure 5: Screenshot of the application

In the first step the program requires the number of pages that are pretended to be in main memory. After that, it requires
to put the sequence of the pages. In the next step, a menu is printed. A choice can be make. The number of frames is
entered, that is the capacity of the main memory. The application shows for each step the pages that are currently in
main memory and the number of page faults. A table with number of page faults, for each algorithm, with page frame size
= 3 and with respectively 8 pages, 16 pages, 24 pages and 32 pages is generated.

E-ISSN 2281-4612
ISSN 2281-3993

Academic Journal of Interdisciplinary Studies
MCSER Publishing, Rome-Italy

 Vol 4 No 2 S2
 August 2015

 61

Table 4: Number of page faults

Page frame size = 3
No. pages

Algorithm
8 16 24 32

FIFO 7 12 18 25
Optimal 6 8 12 18
LRU 6 9 14 20

The results are also given in Figure 5.

Figure 6: Results of the algorithms

5. Conclusions

The purpose of this work was to define the algorithm that realizes the best performance of the system. A good page
replacement algorithm can reduce the page faults, when the program is executing, reduce the number of I/O, and then
increase the system’s efficiency effectively. The time is a critical point for the systems. An improvement in the
performance of the system, having less page faults is made. Optimal results the best algorithm (Figure 5). FIFO has the
worst performance. It has more page faults (degenerates) when the number of pages is increased. Many tests show, that
FIFO, sometimes, makes a wrong decision. It deletes a page from memory and brings it back only after two steps. This
takes many times, because it writes a page in disk and brings it back in main memory in two steps. LRU is the better
algorithm to implement in these conditions. It is clearly shown in Figure 5. The number of page faults for LRU is near to
Optimal page replacement. The results are clearer when the number of pages increases. There are three problems to
face with. The first is to generate automatically the same sequence for three algorithms. It is impossible, because it
generates three different sequences. The second problem is to implement properly the LRU algorithm. And the third, the
number of page faults when we chose the sequence with 32 pages with 4 page frame in memory was 15 for optimal, 16
for FIFO and 17 for LRU. This answer probably depends in the chosen sequence, and it can be a chance in the best
event for FIFO.

6. Future Work

LRU resulted to be the best algorithm for page replacement to implement, but it has some disadvantages. In the used
algorithm, LRU maintains a linked list of all pages in the memory, in which, the most recently used page is placed at the
front, and the least recently used page is placed at the rear. This list must be updated on every memory reference. This
includes finding a page in the list, deleting it, and then moving it to the front. It is a very time consuming operation. In
future work, we will search for another way to implement LRU. The performance of LRU will be tested with different data
structures of algorithms to define which the best is. Then the LRU cache will be implemented.

E-ISSN 2281-4612
ISSN 2281-3993

Academic Journal of Interdisciplinary Studies
MCSER Publishing, Rome-Italy

 Vol 4 No 2 S2
 August 2015

 62

References

Brehob M. Wagner S. Torng E. Enbody R. (2004). Optimal replacement Is NP-hard for nonstandard caches. IEEE Transactions on

Computers. Vol. 53. No. 1. pp. 73-76
Cormen T. H. Leiserson C. E. Rivest R. L. Stein C. (2009). Introduction to algorithms. third edition. MIT press
Chavan A. Nayak K. R. Vora K. D. Purohit M. D. Chawan P. M. (2011). A comparison of page replacement algorithm. IACSIT

International Journal of Engineering and Technology. Vol. 3. No. 2
Kavar C. C. Parmar S. S. (2013). Performance analysis of LRU page replacement algorithm. International Journal of Engineering

Research and Applications (IJERA) Vol. 3. Issue 1. pp.2070-2076
Klues K. Rhoden B. Zhu Y. Waterman A. Brewer E. (2010). Processes and resource management in a scalable many-core OS.

HotPar10. Berkeley. CA
Lo C.T. Srisa-An W. Chang J.M. (2001). A study of page replacement performance in garbage collection heap. Journal of Systems and

Software. issue 3. Vol. 58. pp. 235 - 245
Paajanen H. (2007). Page replacement in operating system memory management. Master’s Thesis in Information Technology.

University of Jyväskylä
Park Seon-yeong Jung D. Kang Jeong-uk Kim Jin-soo Lee J. (2006). Cflru: a replacement algorithm for flash memory. Proceedings of

the 2006 international conference on Compilers. architecture
Tanenbaum A. S. (2008). Modern Operating Systems. Pearson International Edition. Chapter 3
Soares L. Stuum M. (2010). FlexSC: Flexible system call scheduling with exception-less system calls. Proceedings of the 9th USENIX

conference on Operating systems design and implementation
Windows Internals book. fifth edition. Memory management (chapter 9)

