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Abstract 

 
This article contributes to the neural network literature by demonstrating how potent and useful they can be as a tool in the 
process of economic and financial decision makings. We probe into the usefulness of Nonlinear Autoregressive Networks 
(NAR) in comparison to the ARIMA models that are commonly used as a benchmark for forecasting exchange rates. To 
demonstrate it we chose the USD/EUR exchange rate, as a considerably volatile and a highly transacted asset in the 
international financial market, yet very disputed in academic works due to its often large divergences from the fundamental 
levels suggested by economic theories. Although through a modest application, our findings show that neural network models 
can add value and possibly outperform traditional models used to forecast exchange rates. The results were affirmative that the 
nonlinear autoregressive net consistently beat the ARIMA (and the random walk) static forecasts of the USD/EUR exchange 
rate.  
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1. Introduction 
 
Time series forecasting is increasingly used as a valuable tool to provide information in the decision making process. It is 
important for fund managers, corporate treasurers, global traders and policy makers, to mention a few. However, 
forecasting of financial series has proven a very challenging task, especially for volatile time series such as exchange 
rates. Being the largest and the most liquid market with trillions of US dollars transacted every day, the empirical literature 
based on theoretical models has often found it difficult to beat forecasts from more naïve random walk processes. 

Because exchange rates are influenced by many economic, political and psychological factors, it has been hard to 
identify a unique economic model that can provide reliable forecasts. Some authors state that “the poor explanatory 
power of existing theories of the exchange rate is most likely the major weakness of international macroeconomics” 
(Bacchetta & Wincoop, 2006), and that empirical exchange rate models “…generally fail badly in out-of-sample 
forecasting tests in the sense that they fail to outperform a random walk” (Sarno & Taylor, 2002). Even if exchange rate 
theories look fundamentally sound, many researchers blame the empirical implementation as a linear statistical model for 
the dismal forecast performance. Thus, they propose the use of time-varying or non-linear methods, which could help to 
better capture the exchange rate adjustment toward its long-term equilibrium in a nonlinear fashion (Kilian & Taylor, 
2001). 

As a matter of fact, exchange rate series often display signs of nonlinearity, which traditional linear forecasting 
techniques are ill equipped to handle, often producing unsatisfactory results(Philip, Taofiki, & Bidem, 2011). Researchers 
confronted with these characteristics turn to techniques that are heuristic and nonlinear. In this rather short article, we first 
estimate a linear autoregressive model that resembles the random walk to forecast the monthly USD/EUR exchange rate, 
and then generate a nonlinear autoregressive artificial neural network in an attempt to improve the traditional univariate 
model forecasting. Both types of models will finally be compared on their forecast performance, where the focus is on 
minimizing out-of-sample forecast error rather than maximizing in-sample ‘goodness of fit’. 

Indeed, the random walk modeling (of the form yt = yt-1 + et, where et is the random error term) may not effectively 
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handle the uncertainty or instability nature that characterizes exchange rate movements. Instead, we employ the 
autoregressive integrated moving average (ARIMA) model, which is widely used as a benchmark in time series 
forecasting and analysis. ARIMA is a specific subset of univariate modeling, which assumes that the historical 
characteristics of a time series (i.e. its systematic structural features) will be present in the future; therefore they can be 
convenient for forecasting purposes.  

On the other side, artificial neural networks (ANNs) have in the past decade emerged as a powerful alternative 
method for time series forecasting due to their higher capabilities. ANNs are nonparametric data driven approaches that 
can capture nonlinear data structures without prior assumption about the underlying relationship in a particular problem. 
ANNs can learn from examples and demonstrate some capability for generalization, beyond the training data. A large 
number of papers that make use of ANNs for prediction can be found in the literature. Nevertheless, the results reported 
are often mixed.  

To give a brief view on the results, the forecast evaluation based on the ME, MAE and RMSE indicates the neural 
network model has been able to provide better one-month ahead forecasts than the ARIMA model throughout the 2014. 
These findings can lend support to the ANN literature for its applicability in exchange rate forecasting techniques. In what 
follows, we begin by describing the basic facts about the two methodologies we used in the forecasting process, and then 
we present and compare the respective results. 
 
2. Competing Methodologies 
 
The univariate ARIMA and ANN models are applied on the monthly USD/EUR exchange rate, as published online in the 
Thomson Reuters website. The data analysis starts from January 1994 till December 2014 – a total of 252 data points. 
The EViews 7 software was used for the ARIMA modeling. Whereas all partial measurements for the ANNs models are 
implemented directly in the core of MATLAB 2010b environment, which was used for the experiments. Below we describe 
separately the two methodologies applied in this article and show the preferred models in each of them. The chosen 
models are then compared on the basis of their one-month-ahead forecast performance.  
 
2.1 ARIMA modeling 
 
Contrary to multivariate models with explanatory variables that are based on economic theories, ARIMA is a purely 
statistical model, in which a time series is regressed on its own past values (the autoregressive component) plus current 
and lagged values of a ‘white noise’ error term (the moving average component) (Meylar, Kenny, & Quinn, 1998). So by 
their nature, ARIMA models offer very little economic logic; future predictions are formed exclusively from the information 
contained on past movements and forecast errors. But, despite of being “backward-looking” and not very good at 
predicting turning points, ARIMA models often outperform multivariate model predictions, particularly in the short term.  

A general notation of ARIMA models is ARIMA (p, d, q), where p is the number of autoregressive terms, d denotes 
the difference operator (the number of differences needed to convert the series to a stationary level), and q is the order of 
moving average terms in the model. As many economic data, including exchange rates, contain changeable and unclear 
seasonality it could be worthy to test the standard ARIMA representation with additional seasonal dummy variables. 

In practice, we have followed these steps to determine the best forecast ARIMA model. We begin by testing the 
order of integration, whether the data is stationary or if differencing the series is required. Next we run various 
regressions until the best ARMA combination is identified based on certain diagnostic tests. In this step, particular 
attention is paid not only to the models’ good in-sample characteristics, but also to their forecast performance and to the 
number of parameters that appear in the model. 

Figure 1 plots the USD/EUR exchange rate from January 1994 to December 2014. It can be seen that the euro 
currency followed a depreciating trend until 2000; it then gradually reversed its losses till 2007; and it has fluctuated 
around that level thereafter. In another word, the euro exchange rate averaged at about $1.33 in the first half of this 
decade, as compared to the much lower level of $1.19 in the previous 16 years. Meanwhile, its coefficient of variation has 
been fairly in control at only 4.1 during the post-global crisis period, which is nearly four times lower than the earlier 
period.  

Likewise, the unit root tests indicate that the USD/EUR exchange rate is non-stationary in level. The ADF and 
Phillips-Perron tests show, however, that the series can become stationary around a constant (and trend) if differenced 
once. The different test results hold for the whole sample period, as well as for the sub-period starting from the year 2000. 
Therefore, the euro exchange rate will enter the ARIMA model in the first difference. 
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Having determined the order of integration, I(1), we now try to identify the appropriate AR and MA components in 
our model based on formal assessments of certain diagnostic checking and the forecasting ability for every competing 
form. Out of a number of alternative identification methods to determine parameters p and q we follow the penalty 
function criteria, which although offer no theoretical guidelines for choosing the maximum order of ARIMA they are 
asymptotically consistent and not based on subjective interpretation. Penalty function criteria such as Akaike, Schwarz 
and Hannan-Quinn statistics help in selecting a model with minimized sum of squared residuals. Nevertheless, our 
emphasis was finally put on the forecast performance, which suggests more focus on minimizing out-of-sample forecast 
errors than on maximizing the in-sample ‘goodness of fit’ – or the adjusted R2 (Meylar, Kenny, & Quinn, 1998).  

 

 
 
Figure 1: The Daily USD-EUR Exchange Rate 
 
Table 1: Unit Root Tests on the USD/EUR exchange rate 

 ADF test results Phillips-Perron test results
 Null Hypothesis: Unit root Null Hypothesis: Unit root

Levels 1st difference Levels 1st difference 
Variables Prob. Laga Prob. Laga Prob. Bandwidthb Prob. Bandwidthb 
1994M01:2014M12
With constant 0.3000 1 0.0000 0 0.3854 5 0.0000 1 
With constant and trend 0.5571 1 0.0000 0 0.6542 5 0.0000 1 
None 0.6590 1 0.0000 0 0.6672 5 0.0000 1 
  
2000M01:2014M12
With constant 0.3948 1 0.0000 0 0.4649 4 0.0000 1 
With constant and trend 0.6792 1 0.0000 0 0.7898 4 0.0000 1 
None 0.7277 1 0.0000 0 0.7443 4 0.0000 2 
  

aAutomatic selection of lags based on SIC; bNewey-West bandwidth selection using Bartlett kernel 
 
In practice, we estimated numerous ARIMA forms with dozens of AR and MA lags and seasonal dummies, which were 
constantly tested for normal distribution, serial correlation and heteroskedasticity in the residuals. The sample estimation 
period covered January 1994 to December 2013, whereas observations in 2014 were saved to evaluate the out-of-
sample forecast performance. It turned out that overfitting the model with too many parameters increased the in-sample 
explanatory power but weakened the diagnostic tests and/or the out-of-sample forecasting ability. Thus we eventually 
retained a more parsimonious model with the smallest possible number of parameters. The constant term as well as the 
seasonal dummies stayed in the model because, although hardly statistically significant, they were found to help to satisfy 
the aforementioned criteria. The structure of our preferred model is seasonal ARIMA(7,1,48), estimated as a 
parsimonious ARMA Conditional Least Squares (Marquardt) method in the following specification: 
 

�(USDEUR) = 0.35*AR(1) – 0.16*AR(2) + 0.08*AR(3) – 0.12*AR(7) – 0.28*MA(48) + 0.01*c + seas 
Coefs prob. 0.00 0.02 0.23 0.07 0.00 0.16 0.36 
Adj. R2 = 0.12 S.E. of regression = 0.0277
Normal distribution: JB test prob. = 0.15
Serial correlation: LM test, probability Chi-sq(12) = 0.55
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Heteroskedasticity: BPG test, probability Chi-sq(11) = 0.53
where ‘�’ represents the change operator; c indicates the constant; and seas stands for the eleven seasonal dummies 
included in the specification. Most of the selected autoregressive and moving average terms are statistically significant, 
as shown by the probabilities below each of the coefficients. Also, the diagnostic tests suggest that errors are normally 
distributed and do not have serial correlation or heteroskedasticity. In what follows, we describe the nonlinear 
autoregressive model as part of the neural network and then compare the forecasting ability between ARIMA and NAR 
approaches. 
 
2.2 Neural Networks Modeling 
 
This section gives a brief description of the artificial neural networks methodology, starting with basic issues in ANNs for 
time series forecasting and continuing with the nonlinear autoregressive construction (NAR) to predict the USD/EUR 
exchange rate. As previously mentioned this technique is a data driven approach, and it is nonparametric in the sense 
that is not necessary to know any prior information regarding the process that generates the signal. In an ARIMA model, 
we forecast future observation by using a certain function of past observations. Whereas, a network is trained through 
general-purpose algorithms based on time-series data and focusing on the computation of weighted neuron connections 
in a feedforward network to accomplish a desired input-output mapping (Zhang & Hu, 1998). 

The common feedforward architecture of a neural network (NN) is organized into several layers of nodes. The first 
layer is the input layer; then comes the number of nodes in this layer that corresponds to the lagged data observations; 
and the last layer, also known as output layer are the forecasting values. Between the input and the output layer, we put 
one or more hidden layers. The layers have unidirectional connection between them (Janil & Mao, 1996), that is, the 
information must flow from input to output in only one direction with no back-loops. Each connection has a numeric weight 
which signifies its strength. Many authors have rigorously demonstrated that a three-layer neural network with a logistic 
activation function in the hidden units is a universal approximation (Gonzalez, Steven; Canada Economic and Fiscal 
Policy Branch, 2000).  

The most challenging task is how to design a network of appropriate size for capturing the underlying patterns in 
the training data. Ultimately, for a network model to be useful it should have generalization or forecasting capability. 
Hidden nodes are used to capture the nonlinear structures in a time series. Determination of how many hidden nodes to 
use is another difficult issue in the ANN model construction process. Since no theoretical basis exists to guide the 
selection, in practice the number of input and hidden nodes is often chosen through experimentation or by trial-and-error 
(Zhang, Patuwo, & Hu, 1998). The NN learns by adjusting the weights. Various learning algorithms have been used to 
train the network. After the nets are trained, for each ANN model we choose the best architecture based on a certain 
performance criterion.  

The general process used for training the network is done in three basic steps: 
1. Inputting the training data and the target data 
2. Learning the ‘rules’ from the given data collection  
3. Improving the network performance by iteratively adjusting the weights. 
The neural networks can be trained to predict future values of the exchange rate by relying on the own past values. 

But different from the linear estimation in the ARIMA method, the architectural approach to construct our neural network 
will be based on the “Nonlinear Autoregressive models (NAR)”. Our main interest is to systematically examine how the 
forecasting performance of the neural network is affected by various factors, where a number of input nodes and hidden 
layer nodes are selected for the experimental process.  

As in the ARIMA regression, the NAR analysis uses average monthly data of the USD/EUR exchange rate, 
spanning from January 1994 to December 2014, a total of 252 observations. The data is divided into two periods: we use 
the period from January 1994 to December 2013 (240 observations) to estimate and evaluate the model, and retain the 
twelve months in 2014 (5% of the date) for out-of-sample forecast analysis. Also, the in-sample data used for model 
estimation and evaluation is divided into another three parts: the training period consists of 70 percent of the total, while 
the rest is divided equally between the validation (15%) and the testing (15%) periods. The NAR networks are trained for 
1,000 epochs. The Levenberg-Marquardt optimization was employed to train these networks, in which the weights and 
bias values are updated after each epoch in order to find the best configuration of the weights. 

To determine the best architecture of the NAR model we examined a number of neurons in the input and the 
hidden layers. The delayed data used as input neurons in the input layer for our analysis are in the range of one to 
twelve; the number of neurons in the hidden layer is similarly tried one through twelve; so that 144 different architectures 
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(12x12) are examined in the process. For each network architecture the training was repeated ten times using different 
starting values for the weights; they were randomly assigned in order to find the global minimum. Finally, each 
architectures is evaluated on the basis of their predictive power, and the one with lowest forecast errors in the out-of-
sample forecast evaluation is selected. 

Table 2 shows the 144 estimated NN structures and their respective one-month ahead forecast performance 
during 2014. It appears that the NN structure 11—12—1, i.e. involving eleven time lags of the variable and twelve hidden 
layers, is the finest network in terms of providing the most accurate exchange rate forecast for the next month. Both 
measures of forecast evaluation, the RMSE and MAE, indicate that the forecast errors derived by the 11—12—1 net are 
the lowest in comparison to the rest of the NAR networks. The next discussion reviews how this compares with the 
forecast performance of the ARIMA(7,1,48) approach that we developed above. 
 
Table 2: Statistical performance of NAR networks for the USD/EUR exchange rate 
 

NR NN 
Structure RMSE MAE NR NN

Structure RMSE MAE NR NN
Structure RMSE MAE NR NN

Structure RMSE MAE 

1 1-1-1 0.0157 0.0123 37 4-1-1 0.0162 0.0136 73 7-1-1 0.0123 0.0093 109 10-1-1 0.0147 0.0119 
2 1-2-1 0.0178 0.0144 38 4-2-1 0.0149 0.0122 74 7-2-1 0.0139 0.0113 110 10-2-1 0.0125 0.0096 
3 1-3-1 0.0166 0.0133 39 4-3-1 0.0125 0.0107 75 7-3-1 0.0137 0.0111 111 10-3-1 0.0140 0.0121 
4 1-4-1 0.0160 0.0128 40 4-4-1 0.0138 0.0113 76 7-4-1 0.0120 0.0101 112 10-4-1 0.0130 0.0109 
5 1-5-1 0.0176 0.0141 41 4-5-1 0.0142 0.0117 77 7-5-1 0.0128 0.0101 113 10-5-1 0.0121 0.0093 
6 1-6-1 0.0169 0.0133 42 4-6-1 0.0130 0.0113 78 7-6-1 0.0132 0.0100 114 10-6-1 0.0131 0.0114 
7 1-7-1 0.0165 0.0133 43 4-7-1 0.0138 0.0109 79 7-7-1 0.0147 0.0135 115 10-7-1 0.0120 0.0098 
8 1-8-1 0.0178 0.0144 44 4-8-1 0.0129 0.0101 80 7-8-1 0.0159 0.0124 116 10-8-1 0.0141 0.0099 
9 1-9-1 0.0192 0.0150 45 4-9-1 0.0138 0.0115 81 7-9-1 0.0130 0.0105 117 10-9-1 0.0118 0.0091 
10 1-10-1 0.0178 0.0147 46 4-10-1 0.0128 0.0101 82 7-10-1 0.0138 0.0100 118 10-10-1 0.0118 0.0093 
11 1-11-1 0.0175 0.0150 47 4-11-1 0.0141 0.0113 83 7-11-1 0.0117 0.0094 119 10-11-1 0.0121 0.0095 
12 1-12-1 0.0181 0.0152 48 4-12-1 0.0135 0.0109 84 7-12-1 0.0136 0.0107 120 10-12-1 0.0113 0.0083 
13 2-1-1 0.0149 0.0123 49 5-1-1 0.0154 0.0128 85 8-1-1 0.0133 0.0102 121 11-1-1 0.0129 0.0104 
14 2-2-1 0.0137 0.0104 50 5-2-1 0.0140 0.0113 86 8-2-1 0.0133 0.0102 122 11-2-1 0.0135 0.0102 
15 2-3-1 0.0140 0.0114 51 5-3-1 0.0140 0.0114 87 8-3-1 0.0122 0.0087 123 11-3-1 0.0106 0.0083 
16 2-4-1 0.0139 0.0114 52 5-4-1 0.0129 0.0109 88 8-4-1 0.0127 0.0103 124 11-4-1 0.0132 0.0105 
17 2-5-1 0.0123 0.0090 53 5-5-1 0.0138 0.0114 89 8-5-1 0.0124 0.0095 125 11-5-1 0.0126 0.0090 
18 2-6-1 0.0125 0.0091 54 5-6-1 0.0116 0.0090 90 8-6-1 0.0122 0.0098 126 11-6-1 0.0115 0.0096 
19 2-7-1 0.0129 0.0102 55 5-7-1 0.0127 0.0104 91 8-7-1 0.0175 0.0146 127 11-7-1 0.0132 0.0106 
20 2-8-1 0.0132 0.0102 56 5-8-1 0.0138 0.0114 92 8-8-1 0.0120 0.0097 128 11-8-1 0.0126 0.0114 
21 2-9-1 0.0125 0.0106 57 5-9-1 0.0122 0.0101 93 8-9-1 0.0152 0.0122 129 11-9-1 0.0134 0.0114 
22 2-10-1 0.0144 0.0117 58 5-10-1 0.0125 0.0100 94 8-10-1 0.0138 0.0112 130 11-10-1 0.0111 0.0087 
23 2-11-1 0.0129 0.0109 59 5-11-1 0.0127 0.0108 95 8-11-1 0.0133 0.0100 131 11-11-1 0.0149 0.0111 
24 2-12-1 0.0125 0.0094 60 5-12-1 0.0135 0.0113 96 8-12-1 0.0132 0.0102 132 11-12-1 0.0105 0.0079 
25 3-1-1 0.0157 0.0130 61 6-1-1 0.0154 0.0128 97 9-1-1 0.0150 0.0127 133 12-1-1 0.0157 0.0135 
26 3-2-1 0.0144 0.0115 62 6-2-1 0.0150 0.0123 98 9-2-1 0.0134 0.0108 134 12-2-1 0.0156 0.0135 
27 3-3-1 0.0143 0.0116 63 6-3-1 0.0130 0.0104 99 9-3-1 0.0147 0.0122 135 12-3-1 0.0135 0.0105 
28 3-4-1 0.0163 0.0139 64 6-4-1 0.0126 0.0099 100 9-4-1 0.0146 0.0108 136 12-4-1 0.0129 0.0116 
29 3-5-1 0.0146 0.0119 65 6-5-1 0.0134 0.0107 101 9-5-1 0.0157 0.0128 137 12-5-1 0.0126 0.0086 
30 3-6-1 0.0143 0.0116 66 6-6-1 0.0119 0.0100 102 9-6-1 0.0126 0.0101 138 12-6-1 0.0116 0.0093 
31 3-7-1 0.0131 0.0099 67 6-7-1 0.0132 0.0107 103 9-7-1 0.0123 0.0099 139 12-7-1 0.0120 0.0091 
32 3-8-1 0.0139 0.0112 68 6-8-1 0.0124 0.0099 104 9-8-1 0.0156 0.0128 140 12-8-1 0.0133 0.0095 
33 3-9-1 0.0145 0.0120 69 6-9-1 0.0137 0.0110 105 9-9-1 0.0177 0.0138 141 12-9-1 0.0181 0.0151 
34 3-10-1 0.0146 0.0120 70 6-10-1 0.0140 0.0118 106 9-10-1 0.0135 0.0108 142 12-10-1 0.0138 0.0100 
35 3-11-1 0.0126 0.0103 71 6-11-1 0.0113 0.0090 107 9-11-1 0.0120 0.0099 143 12-11-1 0.0126 0.0086 
36 3-12-1 0.0154 0.0132 72 6-12-1 0.0125 0.0103 108 9-12-1 0.0126 0.0102 144 12-12-1 0.0159 0.0135 

 
3. Comparison between Models’ Forecast Abilities 
 
Common measures to evaluate and compare the predictive power of a model are the Mean Error, Mean Absolute Error, 
the Root Mean Squared Error, and the Theil’s U statistic. The first measure, ME, hints on the presence and the direction 
of the bias in the forecasts. A high and positive (negative) ME indicates a tendency to overshoot (undershoot) the actual 



E-ISSN 2281-4612 
ISSN 2281-3993        

Academic Journal of Interdisciplinary Studies
MCSER Publishing, Rome-Italy 

                                   Vol 5 No 1 
                            March 2016 

 

 78 

exchange rate developments. The next two measures, MAE and RMSE, are useful in examining the size of the forecast 
errors. The mean absolute error implies that severity of errors increases in proportion to the MAE (e.g. 2 percent error is 2 
times as serious a 1 percent error), while RMSE assumes that larger forecast errors are worse than smaller ones. The 
final measure, Theil’s U, is an attractive indicator about relative accuracy that allows us to infer whether the applied 
forecasting techniques are better, as good as, or worse than simple guessing.  

As mentioned before, the forecast evaluation period for the two competing models, ARIMA and NAR net, was 
purposely done on the out-of sample data. This is a common procedure among forecasters, who presume that in-sample 
evidence of predictability does not guarantee significant out-of-sample predictability. Therefore to avoid any possibility of 
spurious conclusions, the comparison of the predictive power of our chosen models will be conducted for the period from 
January to December 2014, which was not used in the regression estimation or the testing process. 

Figure 2 exhibits the USD/EUR exchange rate during 2014 and its 12 one-month ahead forecasts based on the 
ARIMA (7,1,48) and NAR (11-12-1), as well as a naïve prediction that assumes ‘no change’ in the next month. A quick 
visual inspection suggests a better performance of the neural network model, since the NAR forecasts appear generally 
closer than other forecasts values to the actual observations. On the other hand, there is no clear view of the ARIMA 
predictions to outperform the naïve guessing values. Indeed, the ARIMA forecast values tend to alternate their position till 
July, but remain above actuals (i.e. positive errors) thereafter. This implies that the ARIMA model has provided robust 
forecasts in a more normal time, but it has consistently overpredicted the USD/EUR exchange rate and was slow to catch 
up with the new trend in the second half of the year, during which the European Central Bank was rallying the markets 
with hints on initiating a quantitative easing programme1. 
 

 
 
Figure 2: Static forecasts of the USD/EUR exchange rate 
 
Table 3: Evaluation of Static Forecasts of the USD/EUR exchange rate 12 one-month ahead periods, January to 
December 2014 
 

 ARIMA(7,1,48) NAR 11-12-1
Mean Error 0.0115 -0.0008
Mean Absolute Error 0.0159 0.0079
Root Mean Squared Error 0.0181 0.0105
Theil’s U statistic 0.9921 0.5748

 
Table 3 presents the forecast evaluation measures for the ARIMA and NAR models. Obviously, the results confirm the 
superiority of the NAR technique by all measures. Its mean error is close to zero – or more precisely, less than a tenth of 
a cent – suggesting that NAR has on average neither overshot, nor undershot the exchange rate in 2014. On the 

                                                            

1“Markets rally after Draghi QE hint”, article in Financial Times, August 25, 2014. Also see “ECB meeting recap: Draghi hints at more 
easing action next year”, article in blogs.marketwatch.com, December 4, 2014. 
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contrary, the mean forecast error of the chosen ARIMA model, though moderate, has overpredicted the actuals by 1.15 
cent in the same period.  

The size of ME in ARIMA is around three-fourth of MAE, indicating the model is not predicting consistently too 
high. But again, that ratio is only one-tenth for the NAR. Similarly, the magnitudes of MAE and RMSE point out that larger 
forecast errors are to be taken more seriously in the case of ARIMA, and less for the neural network model.  

Finally, the Theil’s statistic in the last row of the table shows how both models compare to a naïve prediction (i.e. 
assuming the exchange rate in the next month will be the same as in the current period). Calculated as the ratio of the 
RMSE of the ARIMA (NAR) model to the RMSE of the naïve model, a Theil statistic greater than one would suggest our 
estimated model forecasts perform worse than a random walk model. This statistic for the ARIMA model is close to one, 
which – likewise the graphical inspection – suggests that predictions generated in 2014 were, on average, no better than 
the ‘no change’ method. On the other hand, the NAR predictions appear again to outperform even the naïve model, 
whose inferences for the next month exchange rate are about twice more erroneous. 
 
4. Concluding Remarks 
 
This article contributes to the neural network literature by demonstrating how potent and useful they can be as a tool in 
the process of economic and financial decision makings. To demonstrate it we chose the USD/EUR exchange rate, as a 
considerably volatile and a highly transacted asset in the international financial market, yet very disputed in academic 
works due to its often large divergences from the fundamental levels suggested by economic theories.  

We were able to show that, while through a modest application, neural network models can add value and possibly 
outperform traditional models used to forecast exchange rates. The results were affirmative that the nonlinear 
autoregressive net consistently beat the ARIMA (and the random walk) static forecasts of the USD/EUR exchange rate. 
Nonetheless, in addition to autoregressive techniques and static forecasts, this research analysis can be further extended 
by employing more advanced models that are based on economic fundamentals as well as dynamic forecasts. 
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