
ISSN 2039-2117 (online)
ISSN 2039-9340 (print)

 Mediterranean Journal of Social Sciences
 MCSER Publishing, Rome-Italy

Vol 5 No 20
September 2014

1077

Using a Collaborative Learning Technique as a Pedagogic Intervention for the
Effective Teaching and Learning of a Programming Course

Dr Desmond W. Govender
University of KwaZulu-Natal, Edgewood Campus, South

Africa, Email: govenderd50@ukzn.ac.za

Doi:10.5901/mjss.2014.v5n20p1077
Abstract

Educators are faced with ever increasing challenges when teaching programming. The increase in the number of operating
systems brings with it challenges for programmers because of the change in programming paradigms, programming languages
and software suites that are dependent on most recent developments in technology and more so operating systems. The issue
for educators maybe to move away from teacher centred teaching and learning to student centred learning. Pair programming
is a technique that offers educators an opportunity to further enhance student centred learning. This study conducted an
empirical study of “pair programming” in the teaching and learning of an introductory programming course in computer science
with input from educators and learners. The purpose was to determine how a collaborative learning technique can be used as a
pedagogic intervention for effective teaching and learning of a programming course. The study attempted to determine the
impact of collaborative pair programming on students and whether Information Technology educators can use pair
programming as a teaching strategy. There was a pre-test for students to secure data on how students attempted programming
tasks. Thereafter the pair-programming technique was implemented and a post-test was administered to determine the
effectiveness of the intervention strategy. The research findings indicated that the educators and learners had a positive
attitude towards the use of pair programming to support teaching and learning and learners were convinced that they would
become better programmers in the future.

Keywords: Pair Programming, Teaching Programming, Collaborative teaching strategy, Teaching and Learning.

1. Introduction

One of the ultimate outcomes of information technology (IT) education, is to ensure good pedagogical quality and gainful
employment by the IT student in the software industry. Every day there are an infinite number of ideas and software
projects that industry and academia can conjure up; however, there must be an association between what academia
conjures up and what happens in the software industry. Software projects researched by Bryant, Romero, and du Boulay
(2006) encouraged PP amongst software developers. Williams, Robert, Cunningham, and Jeffries (2000) , validated
anecdotal and qualitative assumptions that pair programming (PP) software products can be produced in less time, with
higher quality than programs done by a single individual.

Over the years debates have persisted over the correct approach to teach Computer Science programming and
the programming languages that should be used. According to Roy and Haridi (2003), the most popular approach to
teach programming is in a single paradigm embodied in a single language. Cooper, Dann and Pausch, (2003) advocate
an objects-first approach, while Howe, Thornton, and Weide (2004) consider the object-oriented (OO) and the
component-first approaches to be most influential. Govender (2006) indicated in her research that there “exists tension
between procedural paradigm and OO paradigm”. Ismail, Ngah, and Umar (2010), however, maintain that an OO
approach to programming is "not a good starting-point for introducing students to the basic concepts of programming".

While the debate rages on as to the challenges in higher post-school education and the insufficient levels of
resources, examination results continue to diminish and dropout rates among first-year students increase (South Africa,
2012). It is for these reasons that we try to ascertain what techniques would assist in improving learners’ ability to
program and thus throughput rates.

2. Literature Review

Programming is a challenging task and programming courses are generally considered problematic by many learners
(Govender, 2006; Macgregor, 2007; Havenga & Mentz, 2009). Cooperative learning, and more importantly PP, has

Lecturer: Department of Information Technology,
Faculty of Accounting and Informatics,Durban University of Technology,

Address: 41-43 ML Sultan Road, Durban, 4001, KwaZulu-Natal, South Africa
Email: prinaving@dut.ac.za

Mr. T.P Govender

ISSN 2039-2117 (online)
ISSN 2039-9340 (print)

 Mediterranean Journal of Social Sciences
 MCSER Publishing, Rome-Italy

Vol 5 No 20
September 2014

 1078

opened up new possibilities for learning programming. Collaborative learning lies at the centre of human development,
motivated by the desire for education that seeks to construct knowledge for the learning society (Education, 2003).
Learning and the construction of knowledge have of late brought about new concepts, for example the introduction of
mobile online learning, which in turn have given rise to changes in educational objectives.

The effective use of PP in support of classroom teaching by integrating technology with an appropriately
considered pedagogical approach was central to teaching and learning programming in this study. Research supports the
premise that collaboration is an effective pedagogy for introductory programming (McDowell, Werner, Bullock, & Fernald,
2002); Cliburn (2003); DeClue (2003). The collaborative learning research literature identifies cooperative behaviour as
students discussing problems together and correcting any misconceptions or mistakes, and it has been identified as a
one of the five critical attributes common to successful collaborative learning (Davidson, 1994).

Vandegrift (2004) states that "PP is a form of collaborative learning in which groups consisting of only two
members – a driver and a navigator – work together on the same computer to complete the same project". Hanks,
McDowell, Draper & Krnjajic (2004) further elaborated that "Each member also has individual responsibilities and roles to
perform". Preston (2005) observed students, who worked in pairs, and found that providing feedback did not appear to be
common practice in PP; this author therefore concluded that feedback should be included in cooperative behaviour and
performance of the roles of navigator and driver. PP is an application of collaborative learning (Preston, 2005).

Williams, Wiebe, Yang, and Miller (2002) however, loosely define PP and collaborative programming
interchangeably: “Pair or collaborative programming is where two programmers develop software side by side at one
computer”.

There has been a decade of research into PP and its usefulness and effectiveness in both academic and industrial
settings (Hannay, Dybå, Arisholm, & Sjøberg, 2009 ;Salleh, Mendes, Grundy, & Burch 2010). Beck (1999), however,
claims that the history of PP stretches back to punch cards. Researchers at Microsoft Begel and Nagappan et al. (2008)
found that most research focused on academic environments, and there were limited studies about PP in industry. This
study has focused on academia, i.e. secondary and tertiary institutions of learning; however, academics must always
bear in mind that the ultimate client of programming is the software industry.

As far back as 1978 there was a conference on programming languages. The Conference on History of
Programming Languages ,Wexelblat (1978) described the 13 computer programming languages present at the time. This
study does not focus on programming languages, but rather on a strategy that a teacher can adopt to teach a particular
programming language. Although the history of PP stretches back to punch cards, it emerged as a viable approach to
software development in the early 1990s when it was noted by Williams et al (2000) “as one of the 12 key practices
promoted by extreme programming”. Swamidurai and Umphress (2012) claim that PP “has been widely accepted as an
alternative to traditional individual programming”.

In the past popular paradigms included imperative programming, functional programming, logic programming and
concurrent imperative programming (Van Roy & Haridi 2002). Empowering learners to become self-sufficient has always
been and will always be a primary objective of education, and PP emerges among a number of recent innovations in the
field of teaching and learning programming that have the potential to assist in this. Pair programming is often used in
professional software development communities and appears in commercial training environments as well as in some
undergraduate and high school classrooms (Nagappan et al., 2003). Chong and Hurlbutt (2007) noted that PP is a
common professional practice in the workplace. When learners programme in isolation they might not experience
collaborative solving of problems, communicating their understanding verbally, and resolving disagreements with their
peers, all vital skills in the world of work. If one has to correctly assume that one of the primary aims of an education is
gainful employment, then introducing PP at institutions of learning is preparation for the world of work. Williams et al.
(2000) stated that among the benefits of PP are increased self-confidence and an interest in IT. Breed et al. (2013)
research indicated that meta-cognitive skills used during PP can result in increased knowledge productivity.

Ismail, Ngah and Umar (2010) state that the main cause of difficulty in understanding programming and coding is
the ‘inactive involvement’ of students during programming tutorials. Nosek (1998) found that PP outperformed individual
programmers and that code from individual programmers had more errors than code programmed by PP. A similar result
was found in this study. Braught, Eby, and Wahls (2008) also found that students with low standardised test scores in
Mathematics showed significant improvements in individual programming skill when enrolled in classes that use PP and it
was also found that drop-out rates decreased and academic achievement was enhanced. Similarly, Nagappan et al.
(2003) showed that a benefit of PP was improved course completion rates. Furthermore, McDowell et al,(2002) noted that
improving student experiences in introductory classes also increased the likelihood that students will continue taking
more advanced classes in computer programming.

ISSN 2039-2117 (online)
ISSN 2039-9340 (print)

 Mediterranean Journal of Social Sciences
 MCSER Publishing, Rome-Italy

Vol 5 No 20
September 2014

 1079

3. Problem Orientation

The rationale for this study was that students perceived programming to be difficult (Koorsse, Calitz, & Cilliers, 2010)
coupled with the increased dropout rate among programming students and decreased throughput rate of programming
qualifications (MacGregor, 2007). The University of South Africa (UNISA) is a distance, correspondence university and in
2007 it announced that it would spend nearly R50 million in intervention strategies to support its programmes
(MacGregor, 2007). Peer-to-peer learning was one intervention strategy conducted in an informal setting at regional
learning centres, aimed at improving the pass rate and reducing the student dropout rate. Kinnunen and Malmi (2006)
indicated that many institutions report dropout rates of 20-40% or even higher in introductory programming courses.
Furthermore, there is overwhelming evidence (Cooper et al., 2003; Govender 2006; Havenga & Mentz, 2009; Kolling &
Rosenberg, 2001; Okur 2006) that supported the fact that both students and educators considered programming difficult
to learn and teach, and that an intervention strategy was required to improve students’ pass rates. This bears testimony
to the fact that educators and academics are seriously concerned about the high student dropout rate and dwindling
numbers of new students enrolling for Computer Science programming courses. The declining graduation numbers in the
Computer Science discipline has also been documented by several authors (Howles, 2009; McKinney & Denton 2004;
Ventura & Ramamurthy 2004).

4. Purpose of the Study

The purpose of this study was to determine how a collaborative learning technique could be used as a pedagogic
intervention for effective teaching and learning of an introductory programming course at secondary schools and
institutions of higher learning within KwaZulu-Natal. The study aimed to determine the impact of collaborative PP on
students, and whether IT educators could use PP as a teaching strategy. The 2 research questions that were addressed
were:

1. What are learners' experiences of solving programming tasks?
2. How does PP enhance problem solving in programming?

5. Design and Methodology

This study used a mixed-methods approach, where both qualitative and quantitative methods were used to address the
research questions. Duffy (1987) summarised the relationship between quantitative and qualitative research: "quantitative
research is used to evaluate objective data consisting of numbers, while qualitative research deals with subjective data
that are produced by the minds of respondents." Qualitative research methods involve collecting textual or verbal data
and observation of people followed by careful description and analysis (Boeree, 2008). For this study the data from the
interviews and observations were analysed using qualitative research methods. Quantitative methods were employed in
analysis of data collected from the questionnaires. Development of the questionnaire was guided by an extensive review
of the literature. The questionnaire included questions eliciting the basic views of respondents towards computer
programming in the classroom, their experiences of cooperative learning strategies and actual support for PP.

5.1 Sampling and data collection

The participants were Grade 11 and Grade 12 IT learners from secondary schools, and IT students from a university of
technology and from a university. In order to obtain data that would further the aims and strengthen this study, it was
decided that it was necessary to use more than one data collection method. The study used interviews, questionnaires
and observations. The researcher observed the learners programming in pairs, and learners complete the pre-test and
post-test questionnaires. Educators were interviewed before and after the intervention. The observations, interviews and
questionnaires enabled the researcher to provide answers to the research questions.

5.2 Data analysis and interpretation

Data analysis involved organising, analysing and interpreting data (McMillan & Schumacher, 1993). Data from the
questionnaires and observation sheets were captured on a spreadsheet as numerical data, which facilitated statistical
representation in percentages and graphs. The data from the interviews were transcribed, and once the transcripts were
completed the researcher looked for themes and categories that were associated with the theoretical framework, guided

ISSN 2039-2117 (online)
ISSN 2039-9340 (print)

 Mediterranean Journal of Social Sciences
 MCSER Publishing, Rome-Italy

Vol 5 No 20
September 2014

 1080

by the research questions.

6. Results and Discussion

In terms of pre-test questionnaires, 222 were administered and collected. All participants were also required to complete
the post-test questionnaire and to rate themselves as computer programmers after the intervention strategy, One
hundred and ninety one (191) post-test questionnaires were collected. The overall reliability score for the ordinal section
that comprises this construct was 0.667, which is close to the acceptable value of 0.70. This implied that the respondents
scored the construct consistently.

With regard to gender, nearly two-thirds (62.6%) of the sample was male, however, the issue of gender was
outside the scope of this study. Approximately half of the students were at first-year level. Even though IT students at
third-year level completed the questionnaires, they were in effect introductory programmers who had no programming
experience. A little more than two-thirds (68.5%) indicated that they did not have any programming experience, while
approximately one-third (31.5%) of the respondents indicated that they had previous programming experience. Half of
this grouping was at first-year university level. In total, half of the respondents who did not have programming experience
were at university. Those in second and third year who indicated that they had no previous programming experience had
referred to programming experience at school.

Of the school learners, 18.3% indicated that they had not had programming experience, and the equivalent value
for the university student was 50.2%. In total, 68.5% of respondents indicated that they had not been exposed to
programming prior to doing a computer subject. Java appeared to be the most common language across the sample
population. On average almost 74% of respondents were exposed to Java.

Initially, in the pre-test, a little more than half (56.1%) of the respondents indicated that they believed that they were
good programmers. A small percentage (3.6%) rated themselves as being advanced. The remaining respondents
indicated that they were experiencing difficulty. In the post-test more than two-thirds of the respondents indicated that
they believed that they were good programmers (68.6%). A small percentage (8.3%) rated themselves as being
advanced and the balance were still experiencing some difficulty.

The pre-test data indicated that only about one-fifth (19.9%) of respondents preferred working alone. More school
learners preferred to work alone (24.1%) than university students (18.4%). Overall similar numbers of respondents
indicated that they would be comfortable with working in a group or with a partner. More university students preferred
working in a group, whilst more school learners preferred working with a partner. Again, in the post-test only about one-
fifth (21.6%) of the respondents preferred working alone. Almost 80% of the learners appeared to be enjoying
programming. This augers well for the overall performance on the course and correlates to the ‘likeability factor’ of the
course.

At least 61.1% of the respondents in the pre-test indicated that they would consult with the teacher and their
classmates; however, when posed with the identical question in the post-test, only 40.1% of respondents indicated that
they would request the educator’s assistance. It is evident that PP reduced educator workload and consultation time as
per the literature.

Only 1.1% of respondents indicated that ‘team work is encouraged’. As IT educators, who require students to
program individually during the teaching and learning process, should we not take our cue from the software industry
which requires programmers to program in pairs/teams, and hence boost our IT learning outcomes and pass rates?

6.1 Thematic analysis

The themes emerged from the pre- and post-test questionnaires, classroom observations and interviews with the
educators, and were as follows: self-rating of programming, programming experience, and likeability/enjoy ability of
programming. The educator’s role referred to the processes of implementing, maintaining and ultimately terminating the
PP strategy in the classroom and the student's role referred to the self-management of paired programming and how it
influenced the successful adoption of the PP strategy.

6.1.1 Self-rating of programming

All participants were asked to rate themselves as computer programmers. Table 1 indicates the self-rating of the
respondents in the pre-test.

ISSN 2039-2117 (online)
ISSN 2039-9340 (print)

 Mediterranean Journal of Social Sciences
 MCSER Publishing, Rome-Italy

Vol 5 No 20
September 2014

 1081

Table 1 : Self-rating of respondents, pre-test (%)

 Group
School learners University students Overall

Advanced 3.4 3.7 3.6
Good 54.2 56.8 56.1

Struggling 42.4 39.5 40.3

A little more than half of the respondents indicated that they believed that they were good programmers (56.1%). A small
percentage (3.6%) rated themselves as being advanced. The remaining (40.3%) indicated that they were experiencing
difficulties with programming. They felt that programming was complicated and that they had insufficient knowledge; this
was, amongst others, the main cause for experiencing difficulties in programming. Table 2 indicates the self-rating of the
respondents as a computer programmer from the post-test results.

Table 2: Self-rating of respondents, post-test (%)

Group
School learners University students Total

Advanced 0.0 9.6 8.3
Good 73.1 68.0 68.6

Struggling 26.9 22.5 23.0

More than two-thirds of the respondents indicated that they believed that they were good programmers (68.6%); in the
pre-test an average of 55% did so, so this indicates a definite increase. A small percentage (8.3%) rated themselves as
being advanced. The remaining respondents (23%) indicated that they were experiencing difficulties with programming,
which is a decrease from the pre-test figure of 40.3%. When comparing whether respondents achieved their
programming solutions by working on their own or within a paired partnership, a similar result was achieved. Almost 60%
of respondents indicated that they often achieved their programming solutions when working on their own; similarly, in the
post-test almost 58% indicated that they did so whilst working with a partner. Table 3 indicates the advantages of using a
paired partner to program.

Table 3: Advantages of using a paired partner to program

Statement Rating %
We achieve our programming solution Often 58
When I write programs with a fellow student the programs are of a higher quality Often 54
Our programs usually have syntax, run time and logic errors Seldom had 54
We usually obtain a programming solution within the allocated time period Often 47
Working as a pair we share each other’s frustration when we are unable to successfully compile our program Always 49
We have the necessary problem-solving skills to find a solution to a programming task Often 56

Of particular importance was the statistic that 54% of the respondents felt that their programs created using PP were of a
higher quality and had fewer syntax and logical errors. During the post-test respondents indicated that they could share
their frustrations when faced with a non-compiling program or inability to grasp a particular programming concept; in
contrast, when programming on their own respondents only had their educator to re-explain the programming concept or
to find the error in their non-compiling error-prone program.

6.1.2 Programming experience

A little more than two-thirds (68.5%) of respondents indicated that they did not have a programming background, while
approximately one-third (31.5%) indicated that they had previous programming experience. This grouping included those
in their first year at university. In total, half of the respondents who did not have programming experience were at
university. Those in second and third year who indicated that they had no previous programming experience referred to
experience gained at school. Of the school learners, 18.3% indicated that they did not have programming experience; the
equivalent value for the university students was 50.2%. In total 68.5% indicated that they had not been exposed to

ISSN 2039-2117 (online)
ISSN 2039-9340 (print)

 Mediterranean Journal of Social Sciences
 MCSER Publishing, Rome-Italy

Vol 5 No 20
September 2014

 1082

programming prior to doing a computer subject.
On average, 34% stated that they had no programming experience. This statistic had the following effects on PP:
• The more experienced programmers tended to dominate the PP experience.
• Educators found it difficult to pair programmers because of differences in programming abilities and

experience.
• In PP the weaker, slower and more inexperienced programmers did benefit from working with more

experienced programmers.

6.1.3 Likeability of programming

Figure 1 shows percentage responses to ‘Do you like to solve programming problems by working alone or within a group
or with a partner?’

Figure 1: Pre-Test : Percentages of respondents who preferred working alone, in a group or with a partner.

Overall, only about a fifth (19.9%) of respondents preferred working alone, with more school learners who preferred to
work alone (24.1%) than university students (18.4%). Overall, similar numbers of respondents indicated that they would
be comfortable with working in a group or with a partner. More university students preferred working in a group, whilst
more school learners preferred working with a partner. Table 4 indicates some of the most popular reasons given for
working with a partner.

Table 4: Reasons given for working with a partner

School learners University students Total

Different views provided by others 27.3 37.7 35.0
Mistakes are easy to detect 9.1 10.7 10.3
Improves understanding and communication 9.1 8.2 8.4
Share knowledge and problem-solving skills 9.1 14.5 13.1

Figure 2 indicates percentage of post-test responses to the question “Do you like to solve programming problems by
working alone or within a group or with a partner”?

Figure 2: Post-test – ‘Do you like to solve programming problems by working alone or within a group or with a partner?’

ISSN 2039-2117 (online)
ISSN 2039-9340 (print)

 Mediterranean Journal of Social Sciences
 MCSER Publishing, Rome-Italy

Vol 5 No 20
September 2014

 1083

Only about one-fifth (21.6%) of respondents preferred working alone overall. The most popular reasons given for working
with a partner were that they could “Share different views and ideas, and that mistakes were easy to detect”. One student
summarised his experiences with group work versus PP in this rather apt quotation: “Easier to work with partner, groups
can become chaotic”.

6.1.4 “Enjoy ability” of programming

Responses from the pre-test as to whether the respondents enjoyed programming indicate that almost 89.1% did so.
Reasons given for this enjoyment indicated that 35.1% found programming fun and that it challenged their thinking, while
14.2% said that it created new ideas and skills. Table 5 indicates the level of agreement for respondents enjoying
programming with a partner in the post-test.

Table 5. Respondents who indicated that they enjoyed programming with a partner in the post-test (%)

Group Total School learners University students
Yes 84.6 87.1 86.8
No 15.4 12.9 13.2

The figures indicate that there were similar levels of agreement between the learners and the students. Overall, the level
of agreement with the statement was high. Some of the popular reasons given for enjoying programming with a partner
are indicated in Table 6.

Table 6: Popular reasons given for enjoying PP (%)

Total
Assist each other 24.7
Share knowledge 16.5
Different opinions are helpful 7.7
Learning experience is easier 7.1
Share work, which makes it easier to find a solution 7.1

Other reasons that were also cited were that they enjoyed hearing different styles of coding programs, enjoyed teamwork,
learned from each other, and found that it improved understanding and was fun and enjoyable. This is in agreement with
the literature reviewed.

The two predominant reasons involved assisting each other (24.7%) and sharing of knowledge (16.5%). It was
observed that because of the fact that students enjoyed programming, they were prepared to spend more time on a
programming task and this eventually led to their obtaining a solution to it.

7. Conclusion

The objective of this study was to investigate the use of PP to support teaching and learning of an introductory
programming course, and to provide learners and educators at schools and tertiary institutions with a strategy that they
could adopt when teaching and learning introductory programming courses. The findings which emanated from the study
are now summarised according to each of the research questions.

Research question one: What are learners’ experiences of solving programming tasks?
The pre-test and post-test questionnaires were used to determine learners’ attitudes towards programming.

Learners were asked in the questionnaire whether they perceived PP to be useful to them, and responses showed strong
agreement. The overall perception from the questionnaire was that learners felt that PP was a useful learning technique
to assist with programming concepts. The majority of learners perceived that the use of PP improved their programming
abilities. The data showed that learners felt that PP was a positive strategy and would unreservedly embrace its use.The
positive responses to the use of PP and data from the pre- and post-test suggest that overall learners and educators
were confident to implement the concepts of PP. Responses to the questionnaires and interviews showed that overall PP
was easy to implement and likely to be more widely adopted by learners and educators. A majority of the learners
indicated the PP was one the strategies that they would adopt when confronted by difficulties in programming tasks. The

ISSN 2039-2117 (online)
ISSN 2039-9340 (print)

 Mediterranean Journal of Social Sciences
 MCSER Publishing, Rome-Italy

Vol 5 No 20
September 2014

 1084

learners’ attitudes towards the paired partner positively and significantly affected their intention to use PP strategies. The
study revealed that use of PP is not a current practice at secondary school level, or in introductory programming courses
at university.

The findings recommended that educators could implement PP and that it would enhance learning of programming
concepts. This confirmed that PP would be suitable to support learning. The post-test elicited data from learners about
how programming with a partner contributed to their learning. Findings suggested that learners associated higher levels
of enjoyment with programming with a partner than with programming in solitary. Observational data suggested that the
male learners preferred and were more likely to select and program with an attractive female programmer. Post test data
suggested that learners were extremely confident that availability of resources, paired partners, educator support
enhanced their learning of programming concepts. Interview data from the educators complemented these findings. It
was noted from educators that educator resources, knowledge of implementing PP, and class sizes enhanced the
educators teaching experience.

Research question Two: How does PP enhance problem solving in OO programming?
One of the findings was that the learners enjoyed discussing problem strategies with their paired partner instead of

with their educators. Observations and data from the post-test showed evidence of discussions that took place between
the learners in a PP environment. Learners mentioned that they consulted with the educator only after they experienced
difficulties that they could not solve as a pair. Often they were able to solve the problem amongst themselves. This is
reassuring, because some learners felt afraid of asking questions in class but are more comfortable communicating to a
paired partner.

The following benefits were derived from the learners’ interaction with PP: improved communication (collaboration);
interactive participation amongst peers; enhanced accessibility of resources; a supportive and non-favourable setting;
and enhancement of collaborative learning. The advantage of the pairing is that the learner can discuss their experiences
with their paired partner before consulting their educator, enhancing independent learning and problem solving. Learners
found it easy to identify with a paired partner from a similar linguistic group because of similarity in cultural background,
which also resulted in improved problem solving. Participating in the PP scenario also allowed for interactive participation.
Learners were actively involved in the PP session, whether it was correcting their paired partner’s mistake, accessing a
secondary resource, or simply quietly observing the programming skills of an experienced partner. Since PP allowed
learners to switch roles, it enhanced the collaboration between paired partners. The findings of this study showed that the
learners found PP an easy, efficient and enjoyable way to learn problem-solving techniques.

Previously most knowledge was gained through the ‘all knowledgeable’ educator who ‘spoon-fed’ an ignorant
learner. Today the incredible power of the Internet coupled with advancements in handheld PC tablets is creating
challenges to educators and learners alike. Information is virtually at their fingertips and IT educators must find novel
teaching strategies to keep the programming students of today interested and eager to solve programming tasks. One
such strategy is PP. PP has a place in the IT classroom. PP provides an innovative way to complement the traditional
learner-educator interaction. The use of PP will create opportunities for collaboration and independent learning, and meet
the needs of all learners in various stages of their learning. PP provides a collaborative learning environment and a
teaching strategy to cater for the programming needs of IT learners and educators of today, encompassing a multi-
faceted (holistic) view of learning. Introduction of the use of PP in our schools and tertiary institutions to support teaching
and learning of programming will not only create new possibilities for our learners to engage in new ways of learning, but
also provide them with job-related software development skills currently being used in the software development industry.
At a simplistic level it may even provide educators with another teaching strategy that can be adopted.

8. Acknowledgements

The data for this study was collected and analysed by Mr. P. Govender a master’s student of Dr. D.W. Govender.

References

Beck, K. (1999). Extreme Programming Explained: Embrace Change, Reading, PA: : Addison-Wesley.
Boeree, G.C. (2008). Personality Theories: An Introduction. Retrieved April 12, 2008, from http://webspace.ship.edu/cgboer/

prsonalityintroduction.html
Braught, G., Eby, L.M. & Wahls, T. (2008). The effects of pair-programming on individual programming skill. Paper presented at the ACM

SIGCSE Bulletin.
Breed, B., Mentz, E., Havenga, M., Govender, I., Govender, D., Dignum, F., & Dignum, V. (2013). Views of the Use of Self-directed

ISSN 2039-2117 (online)
ISSN 2039-9340 (print)

 Mediterranean Journal of Social Sciences
 MCSER Publishing, Rome-Italy

Vol 5 No 20
September 2014

 1085

Metacognitive Questioning during Pair Programming in Economically Deprived Rural Schools. African Journal of Research in
Mathematics, Science and Technology Education, 17(3), 206-219.

Bryant, S., Romero, P., & du Boulay, B. (2006). The collaborative nature of pair programming Extreme programming and agile processes
in software engineering (pp. 53-64): Springer.

Chong, J., & Hurlbutt, T. (2007). The social dynamics of pair programming. Paper presented at the Software Engineering, 2007. ICSE
2007. 29th International Conference on.

Cliburn, D.C. (2003). Experiences with pair programming at a small college. Journal of Computing Sciences in Colleges, 19(1), 20-29.
Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in introductory computer science. Paper presented at the ACM

SIGCSE Bulletin.
Davidson, N. (1994). Cooperative and collaborative learning: An integrative perspective. Creativity and collaborative learning: A practical

guide to empowering students and teachers, 13-30.
DeClue, T.H. (2003). Pair programming and pair trading: effects on learning and motivation in a CS2 course. Journal of Computing

Sciences in Colleges, 18(5), 49-56.
Duffy, M. (1987). Methodological triangulation: a vehicle for merging quantitative and qualitative research methods. Journal of Nursing

Scholarship, 19(3), 130-133.
Education, Department of. (2003). Draft White Paper on e-Education: Transforming Learning and Teaching through Information and

Communication Technologies (ICTs). Government Gazette(26734), 1-44.
Govender , I. (2006). Learning to program,learning to each programming:pre-and-inservice teachers' experiences of an object-oriented

language. (PHD), Unisa, Pretoria.
Hanks, B., McDowell, C. Draper, D. & Krnjajic,M. (2004, 28-30 June). Program quality with pair programming in CS1. Paper presented

at the 9th Annual Conference on Innovation and Technology in Computer Science Education.
Hannay, J., Dybå, T., Arisholm, E., & Sjøberg, D. (2009). The effectiveness of pair programming: A meta-analysis. Information and

Software Technology, 51(7), 1110-1122.
Havenga, M., & Mentz, E. (2009). The school subject Information Technology: A South African perspective. Paper presented at the

South African Computer Lecturers Assocation Conference (SACLA), Mpekweni Beach Resort, South Africa.
Howe, E., Thornton, M., & Weide, B. W. (2004). Components-first approaches to CS1/CS2: principles and practice. Paper presented at

the ACM SIGCSE Bulletin.
Howles, T. (2009). A study of the attrition and the use of student learning communities in the computer science introductory

programming sequence. Computer science education, 19(1), 1-13.
Ismail, M. N., Ngah, N. A., & Umar, I., N. (2010). Instructional Strategy in the teaching of computer programming:a need assessment

analyses. TOJET: The Turkish Online Journal of Educational Technology, 9(2).
Kinnunen, P. & Malmi, L. (2006). Why students drop out CS1 course? . Paper presented at the International Workshop on Computing

Education Research, New York.
Kolling, M. & Rosenberg, J. (2001). Guidelines for Teaching Object Orientation with Java. Paper presented at the 6th conference on

Information Technology in Computer Science Education, Canterbury.
Koorsse, M., Calitz, A.P. & Cilliers, C.C. (2010). Programming in South African Schools: The Inside Story. Paper presented at the South

African Computer Lecturers Association (SACLA), University of Pretoria.
Macgregor, K. (2007). South Africa:Student drop-out rates alarming. 0003. 2010, from http://www.universityworldnews.com/article.php?

story=20071025102245380&mode=print [Accessed: 2009-05-29]
McDowell, C., Werner, L., Bullock, H., & Fernald, L. (2002). The Effects of Pair-Programming on Performance in an Introductory

Programming Course. Paper presented at the SIGCSE'02 . Covington, Kentucky, USA.
McKinney, D. & Denton, L.F. (2004). Houston, we have a problem: There’s a leak in the CS1 affective oxygen tank. ACM SIGCSE

Inroads Bulletin, 36(1), 236-239.
McMillan , J.H. & Schumacher, S. (1993). Research in Education. A Conceptual Introduction (third ed.). New York: Harper Collins

College Publishers.
Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K., Miller, C. & Balik, S. (2003). Improving the CS1 experience with pair

programming. Paper presented at the ACM SIGCSE Bulletin.
Nosek , T. (1998). The Case for Collaborative Programming. Communications of the ACM, 105-108.
Preston , D. (2005). Pair programming as a model of collaborative learning: a review of the research. Journal of Computing Sciences in

colleges, 20(4), 39-45.
Roy , P., & Haridi, S. (2003). Teaching Programming Broadly and Deeply: The Kernel Language Approach. In L. Cassel & R. Reis

(Eds.), Informatics Curricula and Teaching Methods (Vol. 117, pp. 53-62): Springer US.
Salleh , N., Mendes, E., Grundy, J. & Burch, J. (2010). An empirical study of the effects of conscientiousness in pair programming using

the five-factor personality model. Paper presented at the Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1.

South Africa. (2012). The Green Paper for Post School Education and Training. South Africa:Retrieved from http://www.dhet.gov.za/Link
Click.aspx?fileticket=w0qJyEiFVYQ%3d&tabid=189&mid=483

Swamidurai, R. & Umphress, D. (2012). Collaborative-Adversarial Pair Programming. ISRN Software Engineering, 2012, 11. doi:
10.5402/2012/516184

Van Roy , P, & Haridi , S. (2002). Concepts,Techniques, and Models of Computer Programming.

ISSN 2039-2117 (online)
ISSN 2039-9340 (print)

 Mediterranean Journal of Social Sciences
 MCSER Publishing, Rome-Italy

Vol 5 No 20
September 2014

 1086

Vandegrift, T. (2004, 3-7 March 2004). Coupling pair programming and writing : Learning about students'perceptions and processes. .
Paper presented at the 35th SIGCSE Technical Symposium on Computer Science Education

Ventura, P. & Ramamurthy, B. (2004). Wanted: CS1 students. No experience required. ACM SIGCSE Inroads Bulletin, 36(1), 240-244.
Wexelblat, R. L. (1978). History of programming languages I: ACM.
Williams , L.K., Robert R, Cunningham , W., & Jeffries , R. (2000). Strengthening the case for pair programming. Software, IEEE, 17(4),

19-25.
Williams , L., Wiebe , E., Yang, K. F. M., & Miller, C. (2002). In support of pair programming in the introductory computer science course.

Computer Science Education, 12(3), 197-212.

